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Abstract

In this paper free large-amplitude flexural vibrations of thin plates with various planforms and boundary
conditions are studied by the R-function method. This method is based on the joint application of the R-
function theory and variational methods. The main feature of the R-function theory is the possibility to
present all geometric information given in the boundary value problem in analytical form, which allows one
to seek a solution in the form of some formula called the solution structure. A method of constructing the
solution structures for the given nonlinear vibration plate bending problems is developed. Numerical
examples of large-amplitude flexural vibrations of thin plates with arbitrary shapes and boundary
conditions for illustrating the aforementioned R-function method and comparison against the other
methods are made to demonstrate its merits and advantages.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Geometrically nonlinear vibration analysis of thin plates is of primary importance in structural
mechanics. It is well known that there are considerable mathematical difficulties associated with
the complexity of mathematical formulation of the corresponding boundary value problem
see front matter r 2004 Elsevier Ltd. All rights reserved.
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(BVP), which is governed by a system of partial nonlinear differential equations with the
prescribed boundary conditions. The geometrically nonlinear vibration analysis of thin plates
with various boundary conditions has been analyzed by many researchers [1–15]. In 1996, M.
Sathyamoorthy had presented a comprehensive and excellent review in the field [2]. It is known
that the analytical form of the solution to this class of problems may be obtained for some simple
cases of plan forms and boundary conditions of the plates involved [3–5]. Therefore, some
numerical methods are applied in solving nonlinear vibration problems, such as Galerkin and Ritz
methods [6–8], asymptotic [9] and the method of averages [10], various perturbation techniques
[11] and others. The most widely used numerical methods for the nonlinear vibration analysis are
the finite element method (FEM) [12–15] and the boundary element method (BEM) [16,17].
However, in spite of the versatility of the FEM and BEM, the numerical results for the given
nonlinear BVP for vibrating plates of complex planforms and various boundary conditions were
reported only in few works [11,12,18].

In this paper, the R-function method (RFM) based on the joint application of variational
methods and the R-function theory [19,20] and developed for the free linear vibration analysis of
thin orthotropic plates in Ref. [21], is extended to the geometrically nonlinear vibration analysis of
thin plates of arbitrary shape with various boundary conditions.
2. Problem statement

Consider a thin, isotropic plate of constant thickness of surface O and boundary qO. The
geometrically nonlinear dynamic analysis of thin plates is based on the governing von Karman-
type nonlinear partial differential equations of motion [22]. These equations for large-amplitude
vibrating thin plates are of the form [23].
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and D ¼ Eh3= 12 1 � u2
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are the extensional and flexural rigidities,
respectively, for an isotropic plate of uniform thickness h; E and u are the Young modulus and the
Poisson ratio, respectively, r is the mass density. The strain–displacement relations are of the form
[23]
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where �x; �y; and �x;y are in-plane strains components at points of the plate middle surface, and wx,
wy, and wxy are the flexural and twisting curvatures, respectively, u, v, and w are displacements in
the x, y, z directions, respectively.

The system of differential equations (1) must be complemented with initial and boundary
conditions. The four boundary conditions are prescribed along the boundary qO ¼

SM
i¼1qOi as

follows:
(a) Clamped edge qO1:

u ¼ 0; v ¼ 0; w ¼
qw

qn
¼ 0. (3)

(b) Simply supported edge qO2; assuming that the displacements of points on the boundary are
neglected

u ¼ 0; v ¼ 0; w ¼ 0; Mn ¼ �D
q2u

qn2
þ u

q2u

qs2

� �
¼ 0, (4)

where Mn is the normal bending moment, n is the outward normal to the boundary component
qO2 and s denotes the arc length measured along the boundary.
3. The method of solution

For solving the given vibration problem, Hamilton’s principle may be used in the form [24]

L ¼

Zt1

t0

Us � Tð Þ dt; (5)

where US and T are the strain and kinetic energies, respectively. The corresponding expressions
for these energies are given by [24]
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For harmonic vibrations, displacements u, v, and w can be presented as

uðx; y; tÞ ¼ Uðx; yÞ sin lt; vðx; y; tÞ ¼ V ðx; yÞ sin lt; wðx; y; tÞ ¼ W ðx; yÞ sin lt, (7)

where l is the natural frequency of vibrations.
Using Eqs. (2) and (7), we can express the functional (6) in terms of u,v, and w. Integrating over

the interval equal to the period of vibration, i.e. 0ptp2p=l; and taking the expressions (6) into
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account, brings the functional (5) to the following form:
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In the above expression, the first integral represents the strain energy due to the linear
deformation of the plate, while the second integral represents the strain energy due to the
nonlinear straining of the plate. The third integral is the kinetic energy of the plate assuming the
harmonic vibrations.

It is known from the theory of variational methods that the solution of the governing equations
of the given nonlinear BVP with the boundary conditions (3) and (4) is equivalent to the problem
of minimizing the functional (8) [25]. The minimization of the functional can be carried out on a
set of functions satisfying only the so-called principal or kinematic boundary conditions (3) and
the first three conditions (4), while the fourth condition (4), as well as the boundary conditions for
the free edge of the plate (not presented above), are natural for the functional (8). The latter will
be satisfied automatically in the minimization of the functional.

The minimization of functional (8) will be carried out by the Ritz method. Before proceeding
further with this procedure, let us notice that the above functional is not a quadratic function of
the displacement components. Therefore, we will slightly modify this functional. Let us introduce
some additional functions f 1 and f 2 as follows:

f 1 ¼
1

2
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1

2
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qy
. (9)

Let us assume that f 1 and f 2 are known functions. Upon substitution of Eqs. (9) into functional
(8) one transforms it into the quadratic functional of unknown functions U, V, and W, i.e.
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According to the R-function method, let us construct the solution structures for the
displacement components satisfying the prescribed principal boundary conditions (3) and (4).
For example, the following solution structure will satisfy the boundary conditions (3) and (4)

U ¼ o � P1; V ¼ o � P2; W ¼ ok � P3, (11)
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where o ¼ 0 is the equation of the whole boundary O: The values of the exponent k for the
function oðx; yÞ in Eqs. (11) are selected depending on the type of boundary conditions involved,
i.e., k ¼ 1; if the plate is simply supported and k ¼ 2 when the plate is clamped over the boundary.
For the case of mixed boundary conditions, i.e., clamped–simply supported edges of the plate, the
solution structure is defined as

U ¼ oP1; V ¼ oP2; W ¼ oo1P3, (12)

where o1 ¼ 0 is the equation of the clamped part of the boundary @O1;P1;P2; and P3 are some
indefinite components given by

P1ðx; yÞ ¼
XN1

i¼1

aijiðx; yÞ; P2ðx; yÞ ¼
XN2

i¼N1þ1

aijiðx; yÞ; P3ðx; yÞ ¼
XN3

i¼N2þ1

aiciðx; yÞ; (13)

where fjiðx; yÞg; ffiðx; yÞg; and fciðx; yÞg are known elements (coordinate functions) of some
functional space containing the above indefinite components and forming some complete
sequences in this space. For example, we may select the system of algebraic polynomials,
Chebushev or Legendre polynomials, trigonometric polynomials or some finite functions (spines,
atomic functions, etc.) as fjiðx; yÞg; ffiðx; yÞg and fciðx; yÞg: In the present case, the algebraic
polynomials are chosen as complete sets of the above functions. The undetermined coefficients
ai ði ¼ 1; 2; . . .N3Þ are evaluated from the conditions of minimizing functional (10), which result
in the following system of equations

qL
qai

¼ 0 ði ¼ 1; . . . ;N3Þ. (14)

For a construction of the solution structure it is necessary to select the functions oðx; yÞ and
o1ðx; yÞ in Eqs. (12) in such a way that the following conditions will be satisfied:

oðx; yÞ ¼ 0; 8ðx; yÞ 2 qO; o1ðx; yÞ ¼ 0; 8ðx; yÞ 2 qO; oðx; yÞ40; 8ðx; yÞ 2 O.

The fact that the function oðx; yÞ vanishes only at points of the boundary is highly essential,
since otherwise some ‘‘unnecessary conditions’’ may be imposed on the solution. As a result of
that, the chosen functions Pi; i ¼ 1; 2; 3 will not be able to provide a sufficient accuracy of the
solution, i.e., the solution structures will not be complete.

The problem of minimization of the functional (10) for the given nonlinear BVP is solved by
using the following iterative procedure. In the first step of the iterative process, the above-
introduced functions (9) are set equal to zero, i.e., f 1 ¼ f 2 ¼ 0: Then, minimizing the functional
(10), one can obtain the solution for the linear frequencies lm and the corresponding
eigenfunctions W m: The latter are scaled up by some given amplitude of vibration W �

m at some
fixed point of the plate M0ðx; ZÞ: As a rule, M0ðx; ZÞ is the point where the corresponding
eigenfunction reaches its maximum value. Having determined the eigenfunction that corresponds
to the chosen frequency, one can determine functions f 1 and f 2 for the following steps of the
iterative process.

Thus, by knowing the functions f 1 and f 2; one can minimize functional (10) by the iterative
technique, iteration is continued until a modified Euclidean norm based on the difference between
the eigenfunctions, obtained for the two adjacent iterations, will not exceed the given value of
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accuracy e; i.e.
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3. Numerical results

The proposed method for nonlinear vibrations of thin plates has been incorporated into a
software system POLE–RL based on a general RFM formulation for various problems of solid
mechanics [20]. Some results of numerical investigations, obtained with this software system to
illustrate the performance of the method, its relative accuracy, and overall effectiveness are
presented below. Testing of the proposed method was carried out for plates of simple and
complex geometry having simply supported and clamped edges, as well as mixed boundary
conditions. The parameters of investigated plates are: thickness h=a ¼ 0:01; Poisson’s ratio u ¼
0:3: The accuracy of the iterative calculation was assigned to be � ¼ 0:0001: The integration was
implemented numerically by using 12-point Gaussian quadrature.

3.1. Example 1

Let us consider a square plate with the following boundary conditions: (1) the plate is clamped
along x ¼ �a and simply supported along y ¼ �a (CSCS); (2) the plate is clamped along x ¼

�a; y ¼ �a and simply supported along x ¼ a; y ¼ a (CCSS); (3) the plate is clamped along
x ¼ �a; y ¼ a and simply supported along y ¼ �a (CCCS); (4) the plate is clamped along y ¼ �a

and simply supported along x ¼ �a; y ¼ �a (CSSS).
The presented numerical results below were obtained for each type of the above-indicated

boundary conditions by using the solution structures (12). Table 1 presents the fundamental
frequency period ratios T=TL; where T is nonlinear and TL are linear periods, respectively, for the
given isotropic square plate. All of the numerical results given in Table 1 have been obtained by
retaining in expansions (12):
(1)
 70 coordinate functions for the CSCS boundary conditions.This corresponds to 10th degrees
algebraic polynomials approximating U and V and 12th degree polynomial approximating W
with regard to the symmetry of the plate and boundary conditions.
(2)
 208 coordinate functions for the CCSS boundary conditions. This corresponds to 9th degrees
algebraic polynomials approximating U and V and 11th degree polynomial approximating W

with no symmetry taken into account.
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Table 1

Fundamental frequencies periods ratios T=TL of square plates

Type of boundary conditions oL ¼ lLa2
ffiffiffi
r
D

q
T=TL at W �=h

0.2 0.4 0.6 0.8 1

CSCS RFM 28.951 0.9934 0.9743 0.9446 0.9073 0.8651

28.948 [26]

[14] – 0.9904 0.9633 0.9227 0.8739 0.8214

CCSS RFM 27.056 0.9819 0.9653 0.9272 0.8815 0.8326

27.208 [26]

[14] – 0.9863 0.9487 0.8953 0.8349 0.7741

CSSS RFM 23.647 0.9896 0.9603 0.9170 0.8656 0.8110

23.648 [26]

[14] – 0.9848 0.9431 0.8845 0.8190 0.7538

CCCS RFM 31.826 0.9934 0.9756 0.9477 0.9126 0.8732

31.875 [26]

[14] – 0.9906 0.9642 0.9248 0.8776 0.8271

Note: W*/H the nondimensional mazimum amplitude of the deflection.
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(3)
 94 coordinate functions for the CCCS and CSSS boundary conditions. This corresponds to
9th degrees algebraic polynomials approximating U and V and 11th degrees polynomial
approximating W, taking the symmetry of the given plate and boundary conditions about the
y- axis into account.
The number of the above-indicated coordinate functions has been established by analyzing
numerically the stabilization of the T=TL ratios convergence in the iterative process.Further
increases in the number of the coordinate functions did not affect the accuracy of the solution

To examine the accuracy of the numerical results obtained by the RFM, they are compared
with those obtained in Refs. [14, 26]. Table 1 also demonstrates a good agreement between the
above-mentioned numerical results. The percentage error did not exceed 0.05%.

As part of numerical testing procedure, the fundamental frequency period ratios T=TL were
calculated with the assumption that the first derivatives in Eqs. (2) are negligible; thus, the error
introduced by the use of the simplified expressions for the midsurface strains of the form

�x ¼ f 1

qW

qx
; �x ¼ f 2

qW

qy
; �xy ¼ f 1

qW

qy
þ f 2

qW

qx
(15)

was evaluated. The results of this investigation are shown in Figs. 1(a) and (b). These results have
shown that substituting Eqs. (15) into functional (6), the values of ratios T=TL approach those
obtained in Ref. [14]. The maximum deviations of the test results with those of Ref. [14] in this
case do not exceed 0.009%.
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Fig. 1. The fundamental frequency period ratios, T=TL; obtained by using the proposed procedure (solid lines) and

taken from Ref. [14] (dashed lines) for the square plate with the following boundary conditions: (a) the curves 1 and 2

correspond to the CCCS (the edges x ¼ �a and y ¼ a are clamped and the edge y ¼ �a is simply supported) and to the

CCSS (the edges x ¼ �a and y ¼ �a are clamped and the edges x ¼ a and y ¼ a are simply supported) boundary

conditions, respectively; (b) the curves 3 and 4 correspond to the CSCS ( the edges x ¼ �a are clamped and the edges

y ¼ �a are simply supported) and to the CSSS (the edge y ¼ �a is clamped and the edges y ¼ �a; y ¼ �a are simply

supported) boundary conditions, respectively.
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Fig. 2. An angular plate with mixed boundary conditions having the cut depth equal: (a) c=a ¼ 1; (b) 0pc=ap1:
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3.2. Example 2

Consider a plate having a cut with c=a ¼ 1 as shown in Fig. 2(a). The plate has mixed boundary
conditions: the shaded parts of the boundary are clamped, while the dashed lines indicate simply
supported parts of the boundary. The nonlinear vibration analysis of such a plate was carried out
in Ref. [13].

In this case, the functions oðx; yÞ and o1ðx; yÞ entering into structure (12) may be represented in
the form:

o ¼ ðF1^0F2Þ^0ðF3_0F4Þ, (16)

o0 ¼ F2^0$; where$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 � F3_0F5:

p
(17)
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In these expressions, F1 ¼ ða2 � x2Þ=2aX0; F2 ¼ ða2 � y2Þ=2aX0; F3 ¼ ð�xÞ ¼ 0; F4 ¼

ð�yÞX0; F5 ¼ x2 þ y � a=2
� �2

� a=2
� �2� �

X0; and ^0;_0 R- conjunction and R- disjunction,

respectively, determined as [19]

x^0y ¼ x þ y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; x_0y ¼ x þ y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

A construction of the clamped edge boundary o1ðx; yÞ for the plate shown in Fig. 2a, without
application of the R- functions causes considerable difficulties because it requires writing the
equation of the line segment OA belonging to the straight line x ¼ 0 [18,21]. Using the R-
functions, the above equation of the line segment OA may be represented by Eqs. (17). At that
time, the function $ðx; yÞ is equal to zero only at points of this segment.

The values of the fundamental frequency ratios l=lL of the plate (Fig. 2a) are presented in
Table 2 depending on the nondimensional maximum amplitude of the deflection, Wn=h; for the
plate shown in Fig. 2.

The numerical results in this table are given for the two variants of the conducted calculations:
with the use of the simplified kinematic relations (15) [RFM(a)] and with the use of the general von
Karman kinematic relations (2) [RFM(b)]. As it follows from the comparison of these results with
those reported in Ref. [13], the incorporation of the first derivatives of the in-plane displacements
associated with stretching of the plate, qU=qx and qV=qy; results in reduction of the
corresponding values of the frequencies. The calculated discrepancies of the compared numerical
results varies: in the variant of calculation (a) from � 0:001% to � 0:0203%; in the variant of
calculation (a) from � 0:0049% to � 0:0332%:

For the vibration analysis of the plate shown in Fig. 2(a), the total number of coordinate
functions in the expansions (13) was equal to 75, which corresponds to 4th degree algebraic
polynomials approximating U and V and 8th degree polynomials approximating W. The above
number has been ascertained by an investigation of the stability of the convergence of the ratios
l=lL in the iterative process.

3.3. Example 3

Let the depth of the cut for the plate of Fig. 2(b) vary from c ¼ a to 0. We will analyze below
the influence of this parameter on the fundamental frequency ratios l=lL: Notice that if ca0; F3,
F4 and F5 should be presented in expressions (16) and (17) in the form

F3 ¼ ðc � xÞX0; F4 ¼ ðc � yÞX0; F5 ¼ ðx � cÞ2 þ y �
a � c

2
�

� �2

�
a � c

2

� �2
� �

X0.
Table 2

Fundamental frequency ratios of plate of Fig. 2

W �=h

0.2 0.4 0.6 0.8 1 1.2 1.4

[13] 1.015 1.056 1.119 1.196 1.284 1.377 1.477

RFM(a) 1.014 1.053 1.114 1.193 1.287 1.392 1.507

RFM(b) 1.010 1.041 1.090 1.156 1.235 1.327 1.428
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Expressions for F1 and F2 will be of the same form as those in Eqs. (16) and (17). Table 3
presents some numerical results of the investigation of influence of the cut depth c=a on frequency
ratios for the plate shown in Fig. 2b. The above numerical results in this table are also depicted in
Fig. 3 in terms of the cut depth c=a versus the frequency ratios for the values of the amplitudes
ðW �=hÞ ¼ ð0:6; 1; 1:4Þ:

The deviation of the values of the frequency ratio for the investigated plate of complex form for
c=a ! 0 from the corresponding values of l=lL obtained previously for the square plate was not
more than 0.0027% (for the same boundary conditions).
Table 3

Influence of the cut depth c/a on the fundamental frequency ratio l=lL

c/a W*/h

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01 0

RFM 0.2 1.010 1.009 1.008 1.008 1.008 1.007 1.007 1.008 1.008 1.008 1.008 1.008

[13] 1.015 – – – – – – – – – – 1.009

RFM 0.4 1.041 1.040 1.033 1.030 1.030 1.029 1.029 1.030 1.030 1.031 1.031 1.031

[13] 1.056 – – – – – – – – – – 1.038

RFM 0.6 1.090 1.079 1.072 1.065 1.065 1.064 1.064 1.066 1.067 1.068 1.068 1.068

[13] 1.119 – – – – – – – – – – 1.084

RFM 0.8 1.156 1.136 1.124 1.113 1.112 1.110 1.112 1.114 1.116 1.117 1.118 1.117

[13] 1.196 – – – – – – – – – – 1.144

RFM 1 1.235 1.204 1.187 1.170 1.170 1.167 1.169 1.172 1.175 1.177 1.178 1.178

[13] 1.284 – – – – – – – – – – 1.217

RFM 1.2 1.327 1.281 1.259 1.235 1.236 1.232 1.234 1.238 1.243 1.246 1.247 1.247

[13] 1.377 – – – – – – – – – – –

RFM 1.4 1.428 1.367 1.338 1.308 1.309 1.303 1.307 1.312 1.318 1.321 1.323 1.323

[13] 1.477 – – – – – – – – – – –

1.4

1.3

1.2

1.1

0.0 0.2 0.4 0.6 0.8 1.0
c/a

λ/
λ L

Fig. 3. The influence of the cut depth c/a on the fundamental frequencies ratio l/lLfor the three nondimensional

maximum amplitudes of the deflection: W �=h ¼ 1:4 (solid line), W �=h ¼ 1 (dashed line), and W �=h ¼ 0:6 (dotted line).
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Fig. 4. Plate with four cuts.
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3.4. Example 4

Consider a plate having four symmetrical cuts (see Fig. 4) with the two types of homogeneous
boundary conditions along all edges: simply supported and clamped. Numerical analysis was
carried out for each type of boundary conditions using the solution structure (11). The equation of
the boundary component for the plate may be represented as

o ¼ ðF1^0F2Þ^0ðð�F3Þ_0F4Þ^0ðF5_0ð�F6ÞÞ, (18)

where F1 ¼ ða2 � y2Þ=2aX0; F3 ¼ ðc2 � y2Þ=2cX0 and F5 ¼ ðða � dÞ2 � y2Þ=2ða � dÞX0 are the
horizontal strips located between the straight lines y ¼ �a; y ¼ �c and y ¼ �ða � dÞ; respectively.
Let F2 ¼ ða2 � x2Þ=2aX0 be the vertical strip located between the straight lines x ¼ �a: F4 ¼

ðða � dÞ2 � x2Þ=2ða � dÞX0 be the vertical strip bounded by the straight lines x ¼ �ða � dÞ; and,
at last, let F6 ¼ ðc2 � x2Þ=2cX0 be the vertical strip bounded by the straight lines x � c; ^0;_0 are
the R- operations [19].

A comprehensive study of the vibrations for the given plate is presented in Tables 4 and 5. This
study is associated with the influence of the cut depth on the ratios of higher frequencies
l=lL ðm ¼ 2; n ¼ 1 and m ¼ 2; n ¼ 2Þ; as well as with the dependence of the linear frequency
parameter, LL ¼ lLa2

ffiffiffiffiffiffiffiffiffi
r=D

p
; on the dimensionless value of the maximum amplitude W �=h for the

two above-indicated boundary conditions and is presented in Table 4.
In order to check the accuracy of the obtained numerical results, the cut depth c ! 0 so that the

shape of the plate is approached to the square one. A comparison of the numerical results
obtained by the RFM and by the FEM reported in Ref. [12-14] is presented in Table 5. This
comparison demonstrates the accuracy of the proposed method.
4. Conclusion

A variational formulation with RFM and iterative procedure for solving the geometrically
nonlinear free flexural vibrations of thin plates of arbitrary shape with various boundary
conditions has been presented. RFM enables one to seek the solution of the given eigenvalue
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Table 4

Higher frequency ratios l=lL of the plate shown in Fig. 4

m n d/a LL l=lL at W �=h

0.2 0.4 0.6 0.8 1

Simply supported

0.01 52.020 1.0162 1.0635 1.1394 1.2391 1.3595

49.396 1.0238 1.0917 1.1953 1.3255 1.4746

2 1 0.1 71.003 1.0106 1.0419 1.0928 1.1619 1.2475

0.2 92.275 1.0096 1.0380 1.0839 1.1458 1.2224

0.3 117.89 1.0108 10.422 1.0925 1.1605 1.2463

0.4 154.11 1.0126 1.0545 1.1286 1.2313 1.3572

0.01 82.897 1.0141 1.0555 1.1213 1.2079 1.3113

79.163 1.0184 1.0713 1.1525 1.2549 1.3725

2 2 0.1 98.622 1.0108 1.0428 1.0944 1.1635 1.2474

0.2 124.71 1.0089 1.0354 1.0783 1.1362 1.2071

0.3 146.93 1.0082 1.0316 1.0702 1.1228 1.1879

0.4 161.87 1.0092 1.0361 1.0788 1.1352 1.2031

Clamped

0.01 73.777 1.0088 1.0349 1.0772 1.1343 1.2044

73.558 1.0149 1/0571 1.1209 1.2007 1.2923

2 1 0.1 86.007 1.0088 1.0346 1.0765 1.1329 1.2030

0.2 108.66 1.0093 1.0365 1.0801 1.1381 1.2087

0.3 144.63 1.0124 1.0487 1.1075 1.1871 1.2530

0.4 200.83 1.0115 1.0450 1.0972 1.1670 1.2578

0.01 108.36 1.0089 1.0349 1.0769 1.1328 1.2009

108.77 1.0136 1.0522 1.1104 1.1828 1.2653

2 2 0.1 118.59 1.0084 1.0329 1.0724 1.1250 1.1889

0.2 143.94 1.0078 1.0307 1.0674 1.1163 1.1756

0.3 186.64 1.0074 1.0290 1.0637 1.1103 1.1674

0.4 237.04 1.0055 1.0218 1.0485 1.0849 1.1299
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problem in the form of an analytical expression and to construct approximation sequences with
the use of variational, projection, and any other methods. As a result, RFM holds the general
advantages of classical analytical methods, while enabling one to solve vibration eigenvalue
problems for domains of complicated plan forms.

It has been shown that the method yields rapid and convergent numerical results, which are in a
good agreement with those obtained with the use of other numerical or approximate techniques.
The accuracy and applicability of the RFM for the class of the geometrically nonlinear vibration
plate bending problems considered in this paper has been verified successfully.

The further extension of the RFM for the dynamic analysis by considering the geometrically
linear and nonlinear free and forced vibration of composite plates of an arbitrary geometry with
mixed boundary conditions forms the key subject of the authors continuing research. The results
of the new investigations will be reported in due course.
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Table 5

The higher frequencies ratios l=lL for the square plate

m n LL l=lL at W �=h

0.2 0.4 0.6 0.8 1

Simply supported

[13] � 1.0218 1.0832 1.1774 1.2973 1.4363

[14] � 1.0314 1.0528 1.1154 1.1979 1.2967

1 1 RFMa 19.740 1.0314 1.0528 1.1154 1.1979 1.2967

[12] 19.739 1.0185 1.0716 1.1534 1.2565 1.3752

RFMb 19.740 1.0185 1.0715 1.1532 1.2565 1.3756

[13] � 1.0300 1.1136 1.2194 1.3902 1.5600

RFMa 49.349 1.0162 1.0636 1.1393 1.2392 1.3594

2 1 [12] 49.396 1.0238 1.0917 1.1953 1.3255 1.4746

RFMa 49.349 1.0237 1.0913 1.1946 1.3246 1.4737

[13] � 1.0216 1.0833 1.1782 1.2985 1.4375

RFMa 78.957 1.0131 1.0513 1.1124 1.1929 1.2895

2 2 [12] 79.163 1.0184 1.0713 1.1525 1.2549 1.3725

RFMb 78.957 1.0184 1.0713 1.1526 1.2555 1.3738

Clamped

1 1 [12] 36.004 1.0070 1.0276 1.0607 1.1046 1.1575

RFMa 35.985 1.0018 1.0081 1.0209 1.0417 1.0705

RFMb 35.985 1.0070 1.0276 1.0607 1.1046 1.1576

[12] 73.558 1.0149 1.0571 1.1209 1.2007 1.2923

2 1 RFMa 73.394 1.0088 1.0347 1.0767 1.1334 1.2030

RFMb 73.394 1.0140 1.0542 1.1165 1.1963 1.2901

[12] 108.77 1.0136 1.0522 1.1104 1.1828 1.2653

2 2 RFMa 108.22 1.0083 1.0329 1.0727 1.1262 1.1916

RFMb 108.22 1.0125 1.0486 1.1052 1.1784 1.2647
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